Reg. No.:

Eighth Semester B.Tech. Degree Examination, November 2015 (2008 Scheme) 08.802 : COMPUTER SYSTEM ARCHITECTURE (R)

08.802 : COMPUTER SYSTEM ARCHITECTURE

Time: 3 Hours

PART-A

Answer all questions.

- 1. List out the metrics affecting the scalability of a computer system for a given application.
- 2. Which PRAM variant can best model SIMD machines and how?
- Distinguish between register-to-register and memory-to-memory architecture for building conventional multivector supercomputers.
- 4. Explain how instruction set and memory hierarchy affect the CPU performance in terms of clock rate, program length and effective CPI.
- Distinguish between multiprocessors and multicomputers based on their structures, resource sharing and interprocessor communications.
- 6. What is the significance of Bernstein's condition to detect parallelism?
- 7. Compare temporal locality and spatial locality of references.
- 8. Distinguish between static and dynamic interconnection network.
- 9. Describe bus arbitration in multiprocessor system.
- 10. Describe the cache inconsistencies caused by process migration. (10×4=40 Marks)

PART-B

Answer one full question from each Module. Each question carries 20 marks.

MODULE-I

- a) Analyse the dependencies among the following statements in a given program.
 Show the dependence graphs among the statements with justification.
 - i) DO 10 I = 1, N A(I + 1) = B(I - 1) + C(I) B(I) = A(I) * K C(I) = B(I) - 110 CONTINUE

 ii) S1: Load R1, M(100)
 $/R1 \leftarrow Memory(100)/$

 S2: Move R2, R1
 $/R2 \leftarrow (R1)/$

 S3: Inc R1
 $/R1 \leftarrow (R1) + 1/$

 S4: Add R2, R1
 $/R2 \leftarrow (R2) + (R1)/$

 S5: Store M(100), R1
 $/Memory(100) \leftarrow (R1)/$

Where (Ri) means the content of register Ri.

- i) Draw dependence graph to show all the dependencies with justification.
- ii) Are there any resource dependencies if only one copy of each functional unit is available in the CPU?
- b) List the basic differences between UMA, NUMA and COMA models.

OF

- a) A workstation uses a 15 MHz processor with a claimed 10-MIPS rating to execute a given program mix. Assume one cycle delay for each memory access.
 - i) What is the effective CPI of this computer?
 - ii) Suppose the processor is being upgraded with a 30 MHz clock. However the speed of the memory subsystem remains unchanged and consequently two clock cycles are needed per memory access. If 30% of the instructions require one memory access and another 5% require two memory accesses per instruction, what is the performance of the upgraded processor with a compatible instruction set and equal instruction counts in the given program mix?
 - Explain in detail about various interleaved memory organization in multiprocessor system.

12

8

MODULE - II

13. Consider the five-stage pipelined processor specified by the following reservation table :

	1	2	3	4	5	6
S1	X				E IB	X
S2		X			Х	
S3			X			
S4				X		
S5		X				X

- a) List the set of forbidden latencies and collision vector.
- b) Draw state transition diagram showing all possible initial sequences (cycle) without causing a collision in the pipeline.
- c) List all the simple cycles from the state diagram.
- d) Identify the greedy cycles among the simple cycles.
- e) What is the Minimum Average Latency (MAL) of this pipeline?
- f) What is the minimum allowed constant cycle in using this pipeline?
- g) What will be the maximum throughput of this pipeline?
- h) What will be the throughput if the minimum constant cycle is used?

OR

- 14. a) Explain the concept of arithmetic pipeline design.
 - b) Discuss the various instruction issue and completion policies with and without instruction look ahead in a superscalar processor.

MODULE - III

- 15. a) Explain any two cache coherence protocol.
 - b) Explain the Intel Paragon System architecture with a neat schematic sketch.

OR

- a) Describe how multiport memories are used in multistage networks. Explain blocking and non-blocking network with the help of Omega network.
 - b) Describe data flow and hybrid architecture.

(3×20=60 Marks)

10

10

10

10

10